

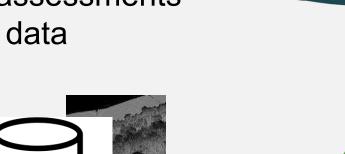
Knowledge Transfer **Partnerships**

Drone derived Multi-Modal Al Predictive Model to detect & identify peatland degradation, plan restoration activities & monitor peatland health

Radia Rayan Chowdhury a, c, Mark Hopper c, Dr Alessandro Di Stefano a, Prof Claudio Angione a, Dr Gillian Taylor b, Dr Annalisa Occhipinti a

- a. Department of Computing & Games, School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- b. School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- c. Climate Solutions Exchange Ltd., Barningham Coach House, Barningham Richmond, North Yorkshire, DL11 7DW

Background


Healthy Peatland Vs Degraded Peatland

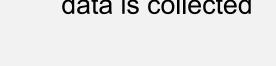
Benefits of healthy peatlands Impacts of degraded peatlands

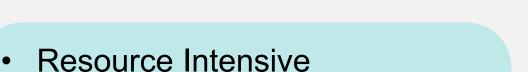
The Challenges with the Current Approach

Manual Approach

Based on ground based assessments or low resolution satellite data

1. Ecologists walking the peatlands & collecting data (mapping erosion feature)


2. Unstructured/incomplete data is collected



3. Approximate

land measurement

& Plan Restoration

Time-consuming

 Subjective observation Lack precision & efficiency

 Hinder effective restoration planning & decision making

Expensive to deliver, lack of scalability, limited reduction of carbon emissions

Our Approach: Multi-Modal Al Predictive Model

Windowed

Tiles

RGB

Drone & IoT Devices

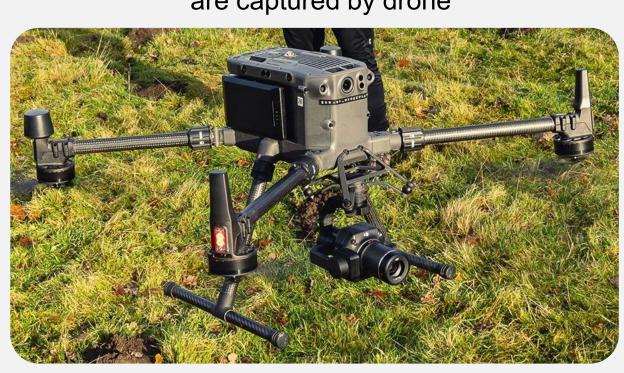
Scenario

UK has 3 million ha of peatland which

• 80% in poor condition & releases 23

Our AI based automated tool will enable

restoration activity cost effectively &


reduce carbon emissions faster

million tonnes of CO₂ annually ¹

scalable planning of peatland

stores over 3 billion tonnes of carbon 1

High resolution RGB & LiDAR images are captured by drone

Water Table depth (WTD) & CO₂ Concentration are collected from remotely accessed IoT sensors

Gas Analyser

Store

Peat Camera

Multi-Modal Data Drone RGB Image Drone LiDAR image CO₂ Flux

Remote IoT Data

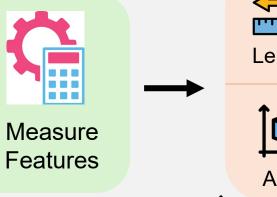
RGB & LiDAR

Preprocess

Filter **Eroded Area**

Framework

Deep learning model



Plan Peatland

Restoration Activity

Post Process

Volume

Delivery of peatland

restoration

Detected Erosion Feature

Automated detection

 Accurate measurement

Scalable planning

Expedite restoration

Business carbon

audit trail

 Cost-effective restoration

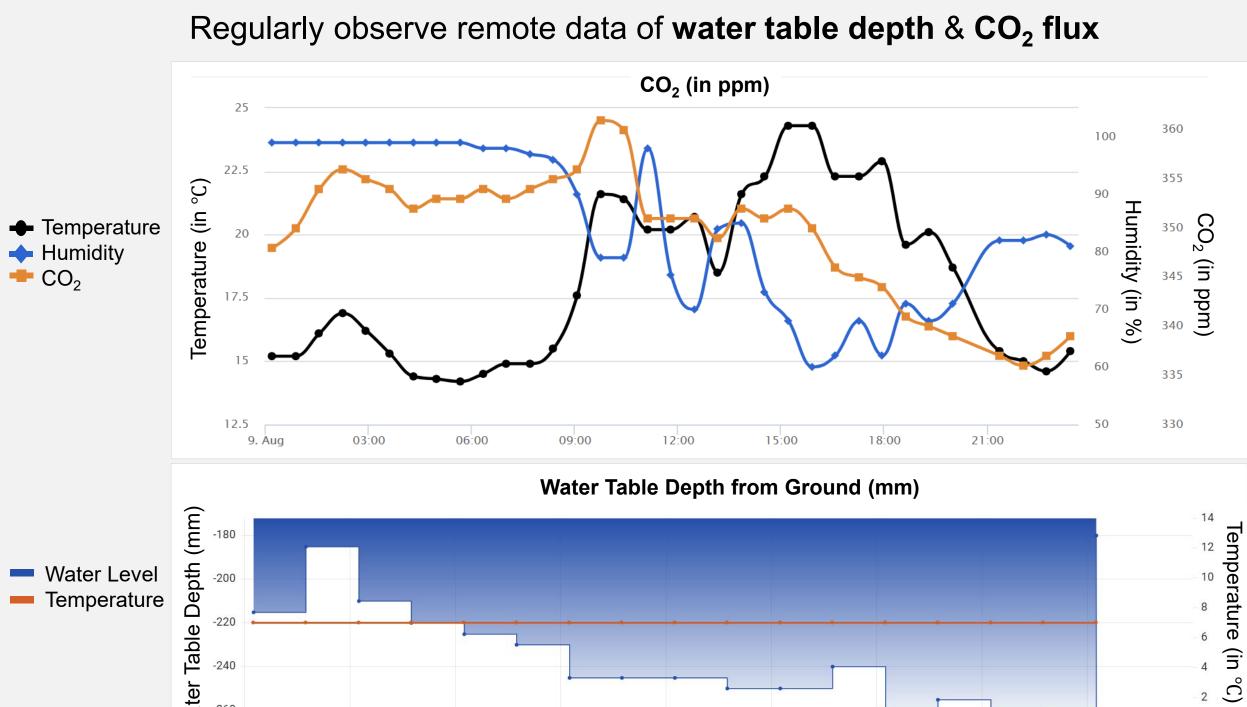
reduction

Reduce Carbon Emission

Outcomes

Map of Erosion Features

Identify areas undergoing degradation

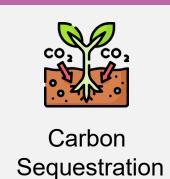


Manual Annotations (Red) vs Model Predictions (Green)

Peatland Health Assessment

Monitor Peatland Health

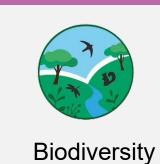
Restoration Plan


Plan restoration based on erosion features measurement & peatland health assessment

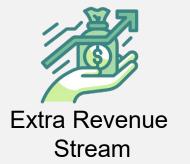
Carbon available: 2000 tC02e (over 20 years) ²

Example: Peatland restoration - Grip Blocking Location: North Yorkshire Restoration size: 50.5 ha

Benefits



Example 2:



- CO₂

UK natural capital-Office for National Statistics (ons.gov.uk), Accessed June 2024

network. Remote Sensing, 15(2), p.499.

https://csxcarbon.com/buy-carbon-buy-bng-offsets/, Accessed August 2024 He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). Pawłowski, M., Wróblewska, A. and Sysko-Romańczuk, S., 2023. Effective techniques for multimodal data fusion: A comparative analysis. Sensors, 23(5), p.2381. Robb, C., Pickard, A., Williamson, J.L., Fitch, A. and Evans, C., 2023. Peat Drainage Ditch Mapping from Aerial Imagery using a convolutional neural

