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Introduction Nationwide Density of Peatland Degradation Features in
Aims: Scotland per 500m2 Unit Area

* Improve the spatial resolution of Scotland’s peat condition Insets show localised

mapping drainage and erosion features

Identify specific peat condition features at 25cm resolution.

Provide GIS layers suitable for other users Drainage Density
Provide a modular pipeline for use in other remote sensing Uhilzs s
tasks 0
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* |Image segmentation datasets of peatland drainage and
0

erosion have been created

 Models for segmenting peatland drainage and erosion
features have been developed

* A deep learning pipeline for national scale modelling has
been created and deployed on existing HPC infrastructure

* National mapping at 25cm resolution has been carried out

Methods

Model Development

= Semantic segmentation was achieved using manually digitized
datasets and a U-Net architecture with a ResNet-101 backbone.

= 46 tiles of drainage — 7,774 mosaiced image/mask pairs
= 33 tiles of erosion — 5,577 mosaiced image/mask pairs
"= 90/10% training/validation split
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Figure 1a — Example of drainage image/mask pair Figure 1b — Example f erosion irlnage/m.ask pair

/4
7,

S/

L

V. ,/' /o /' = / ./vf — ./7/
7 //// /”/ N A ‘
n R ¥ { ( Y
A y ) L J L | 4

Figure 2 — U-Ne’; Architecture
= Using this architecture and the assembled datasets for both

drainage and erosion features two separate models were trained:

=  Drainage: Dice Loss - 0.01095, F1 Score - 0.99013, Accuracy - 0.99013, loU - 0.98
= Erosion: Dice Loss - 0.02587, F1 Score - 0.97553, Accuracy - 0.97552, loU - 0.95
= |ndicates good generalisation accross the training datasets

Image Processing/GIS Pipeline
" The trained models were then deployed using the GPU nodes of
the Institute’s CropDiversity HPC

0 05 1 15 2km

* The resulting predictions were then cleaned, formatted and | e T ’ 7 ol sl
validated as GIS layers oY)
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Estimated 426 km? of Eroded peat and 51,700 km of drainage channels in Scotland
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Capital Future work includes:

Scottish Government

Incorporating Colour Infrared (CIR) imagery from APGB for improved detection and segmentation of desired features
: Use instance segmentation over semantic segmentation to detect individual features
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Automated segmentation and classification of additional features visible in imagery — muirburn, peat extraction, etc.
Use of the high-throughput pipeline on other applicable remote sensing tasks
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