

How's Peat Doing?

Using Deep Learning and High-Resolution Imagery to Map the **Condition of Scotland's Peatland Resource**

Fraser Macfarlane^{1*}, Ciaran Robb¹, Margaret M^cKeen², Rebekka Artz², and Matt Aitkenhead² ¹ The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland ² The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland

* Email: fraser.macfarlane@hutton.ac.uk

The James Hutton Institute

Introduction

Nationwide Density of Peatland Degradation Features in Scotland per 500m² Unit Area

Aims:

- Improve the spatial resolution of Scotland's peat condition mapping
- Identify specific peat condition features
- Provide GIS layers suitable for other users
- Provide a modular pipeline for use in other remote sensing tasks

Overview:

- Image segmentation datasets of peatland drainage and erosion have been created
- Models for segmenting peatland drainage and erosion features have been developed
- A deep learning pipeline for national scale modelling has been created and deployed on existing HPC infrastructure
- National mapping at 25cm resolution has been carried out

Methods Model Development

Insets show localised drainage and erosion features at 25cm resolution.

Drainage Density 0.512482

Erosion Density 0.741001

- Semantic segmentation was achieved using manually digitized datasets and a U-Net architecture with a ResNet-101 backbone.
 - 46 tiles of drainage 7,774 mosaiced image/mask pairs
 - 33 tiles of erosion 5,577 mosaiced image/mask pairs
 - 90/10% training/validation split

Figure 1a – Example of drainage image/mask pai

Figure 1b – Example of erosion image/mask pair

Figure 2 – U-Net Architecture

- Using this architecture and the assembled datasets for both drainage and erosion features two separate models were trained:
 - Drainage: Dice Loss 0.01095, F1 Score 0.99013, Accuracy 0.99013, IoU 0.98
 - Erosion: Dice Loss 0.02587, F1 Score 0.97553, Accuracy 0.97552, IoU 0.95
 - Indicates good generalisation accross the training datasets

Image Processing/GIS Pipeline

- The trained models were then deployed using the GPU nodes of the Institute's CropDiversity HPC
- The resulting predictions were then cleaned, formatted and

validated as GIS layers

Training

Acknowledgements

Special thanks go to Airbus Intelligence for the provision of APGB imagery.

This work is funded by RESAS as part of JHI-D3-1 CentrePeat, JHI-C3-1 Land Use, and JHI-D5-2 Natural Capital

Conclusions

- This work presents a pipeline for peatland degradation classification using deep learning
- Estimated 426 km² of Eroded peat and 51,700 km of drainage channels in Scotland
- These layers have been validated using existing spatial datasets and will be made available to the wider community
- Future work includes:
 - Incorporating Colour Infrared (CIR) imagery from APGB for improved detection and segmentation of desired features
 - Use instance segmentation over semantic segmentation to detect individual features
 - Automated segmentation and classification of additional features visible in imagery muirburn, peat extraction, etc.
 - Use of the high-throughput pipeline on other applicable remote sensing tasks